Early View Article: Online published version of an accepted article before publication in the final form.

Journal Name: Journal of Case Reports and Images in Surgery

Type of Article: Case Report

Title: Postoperative pulmonary lymphedema after lobectomy and mediastinal nodal dissection for lung cancer

Authors: Ryota Sumitomo, Takamasa Fukui, Yosuke Otake, Cheng-long Huang

doi: To be assigned

Early view version published: June 5, 2017

Disclaimer: This manuscript has been accepted for publication. This is a pdf file of the Early View Article. The Early View Article is an online published version of an accepted article before publication in the final form. The proof of this manuscript will be sent to the authors for corrections after which this manuscript will undergo content check, copyediting/proofreading and content formatting to conform to journal’s requirements. Please note that during the above publication processes errors in content or presentation may be discovered which will be rectified during manuscript processing. These errors may affect the contents of this manuscript and final published version of this manuscript may be extensively different in content and layout than this Early View Article.
TYPE OF ARTICLE: Case Report

TITLE: Postoperative pulmonary lymphedema after lobectomy and mediastinal nodal dissection for lung cancer

AUTHORS:
Ryota Sumitomo¹, Takamasa Fukui¹, Yosuke Otake¹, Cheng-long Huang¹

AFFILIATIONS:
¹MD, Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan

CORRESPONDING AUTHOR DETAILS
Ryota Sumitomo
Department of Thoracic Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480, Japan
Email: rt-sumitomo@kitano-hp.or.jp

Short Running Title: Postoperative pulmonary lymphedema

Guarantor of Submission: The corresponding author is the guarantor of submission.
TITLE: Postoperative pulmonary lymphedema after lobectomy and mediastinal nodal dissection for lung cancer

ABSTRACT

Introduction

Lymphedema can arise due to disruption of the normal lymphatic circulation by surgery. We present patient who had pulmonary lymphedema after thoracoscopic right lower lobe lobectomy and mediastinal nodal dissection for lung cancer.

Case Report

A 72-year-old man presented with dyspnea 2 days after thoracoscopic right lower lobe lobectomy and mediastinal nodal dissection for lung cancer. Postoperative pulmonary lymphedema was diagnosed because of the transition of pulmonary shadow in two computed tomography scans obtained in different body positions. He was given oxygen till the fourth postoperative day, and the abnormal shadow gradually disappeared. He was discharged on the 14th postoperative day.

Conclusion

Postoperative pulmonary lymphedema presents radiological findings of enlargement of interstitial shadow with ground-glass attenuation and consolidation, which resemble life-threatening complications including acute lung injury or acute respiratory distress syndrome, interstitial pneumonia, and heart failure. The shadow transition between two computed tomography images obtained in different body positions is considered to be useful to diagnose postoperative pulmonary lymphedema.

Keywords: Postoperative pulmonary lymphedema, Lobectomy, Postoperative complication.
TITLE: Postoperative pulmonary lymphedema after lobectomy and mediastinal nodal dissection for lung cancer

INTRODUCTION
Pulmonary lymphedema is a rare postoperative complication. The lymphatic system of the lung provides an important route for clearance of interstitial edema fluid filtered from pulmonary blood vessels. Interstitial lung fluid volumes are strictly controlled and maintained at the minimum owing to the ability of lymphatics to match the increase in filtration rate [1]. Lymphedema can arise due to disruption of the normal lymphatic circulation by surgery [12]. We present two patients: a patient who had postoperative pulmonary lymphedema after thoracoscopic right lower lobe lobectomy and mediastinal nodal dissection for lung cancer.

CASE REPORT
A 72-year-old man with a 20 pack-years’ smoking history was referred to our hospital for the evaluation of a lung nodule. Computed tomography (CT) revealed a 10-mm-diameter tumor in the right lower lobe, which was suspected to be lung cancer. No lymph node or distant metastases were detected on positron emission tomography (PET) and magnetic resonance imaging (MRI) of the brain. Video-assisted thoracoscopic surgery (VATS) right lower lobe lobectomy with dissection of the hilar, superior mediastinal, and subcarinal lymph nodes was performed. The tumor was diagnosed as adenocarcinoma, 12 mm in diameter, with a pathological stage of T1b N0 M0.

In the morning of the second postoperative day, he presented with dyspnea. His oxygen saturation level worsened, so oxygen administration was begun. Chest radiography revealed diffuse infiltrative shadow of the right lung. Laboratory test revealed no elevation of KL-6 and surfactant proteins A and D levels. Echocardiography revealed no cardiac dysfunction and congestion. Chest CT revealed diffuse enlargement of the interstitial shadow with ground-glass attenuation and consolidation in the residual right lung (Figure 1A). Sequentially, the patient was turned from the supine to the prone position, and chest CT was performed again in the prone position 30 minutes later (Figure 1B). Then, when the CT scans were
compared, part of the enlargement of the interstitial shadow with ground-glass attenuation and consolidation vanished on the CT scan performed in the prone position 30 minutes later. However, new shadow emerged on the abdominal side of the residual right lung. Therefore, postoperative pulmonary lymphedema was diagnosed because of the transition of pulmonary shadow in the two CT scans obtained in different body positions. He was given oxygen till the fourth postoperative day, and the abnormal shadow gradually disappeared. The patient was discharged from the hospital on the fourteenth postoperative day.

DISCUSSION

Pulmonary lymphedema is a rare postoperative complication. Lymphedema can arise due to disruption of the normal lymphatic circulation. Lymphatic vessels are inevitably damaged during lobectomy and nodal dissection for lung cancer; thus, pulmonary lymphedema could occur after lobectomy. A previous study reported that lymph flow in the lung runs directly to mediastinal lymph nodes through the superficial subpleural lymphatic vessel and to hilar lymph nodes through the deep lymphatic vessel [3, 4]. In the present cases, the hilar, superior mediastinal, and subcarinal lymph nodes were dissected. Excessive dissection of mediastinal lymph nodes during lobectomy may cause congestion of lymph flow, resulting in pulmonary lymphedema.

Imaging findings revealed that enlargement of interstitial shadow with ground-glass attenuation and consolidation on chest high-resolution CT are characteristic of pulmonary lymphedema due to the congested lymph flow. The differential diagnoses of these findings include acute lung injury (ALI) or acute respiratory distress syndrome (ARDS), interstitial pneumonia, and heart failure, which is sometimes life-threatening [45]. However, in the present cases, the CT scans showed that the shadow moved downward probably because of the gravity after conversion from the supine to the prone position. The transition of the shadow is cannot be recognized in ALI or ARDS, interstitial pneumonia, and heart failure. Therefore, this finding is considered to be useful to diagnose postoperative pulmonary lymphedema.
Concerning the treatment of postoperative pulmonary lymphedema, any special treatment was not required for improvement in the present case. Postoperative pulmonary lymphedema may become gradually improved as time passes.

CONCLUSION
Postoperative pulmonary lymphedema presents radiological findings of enlargement of interstitial shadow with ground-glass attenuation and consolidation, which resemble life-threatening complications including ALI or ARDS, interstitial pneumonia, and heart failure. The shadow transition between two CT images obtained in different body positions is considered to be useful to diagnose postoperative pulmonary lymphedema.

LIST OF ABBREVIATIONS
ALI, acute lung injury; ARDS, acute respiratory distress syndrome; CT, computed tomography; PET, positron emission tomography; MRI, magnetic resonance imaging; VATS, video-assisted thoracoscopic surgery

CONFLICT OF INTEREST
The authors declare that they have no competing interests.

AUTHOR’S CONTRIBUTIONS
Ryota Sumitomo, MD
Group 1 - Conception and design, Acquisition of data, Analysis and interpretation of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published

Takamasa Fukui, MD
Group 1 - Conception and design, Acquisition of data, Analysis and interpretation of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published
Yosuke Otake, MD

Group 1 - Conception and design
Group 2 - Critical revision of the article
Group 3 - Final approval of the version to be published

Cheng-long Huang, MD

Group 1 - Conception and design, Acquisition of data, Analysis and interpretation of data
Group 2 - Drafting the article, Critical revision of the article
Group 3 - Final approval of the version to be published

REFERENCES

FIGURE LEGEND

Figure 1: (A) - Sagittal image of initial CT scan showing diffuse enlargement of interstitial shadow with ground-glass attenuation and consolidation in the residual right lung. (B) - Sagittal image of second CT scan, obtained in the prone position 30 minutes after the initial CT scan. Part of the enlargement of the interstitial shadow with ground-glass attenuation and consolidation had vanished (arrow heads), and a new shadow can be observed on the abdominal side of the residual right lung (arrow).

FIGURE

Figure 1: (A) - Sagittal image of initial CT scan showing diffuse enlargement of interstitial shadow with ground-glass attenuation and consolidation in the residual right lung. (B) - Sagittal image of second CT scan, obtained in the prone position 30 minutes after the initial CT scan. Part of the enlargement of the interstitial shadow with ground-glass attenuation and consolidation had vanished (arrow heads), and a new shadow can be observed on the abdominal side of the residual right lung (arrow).